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Abstract

This paper presents an approach to the verification of
large Java programs. The focus lies on programs that im-
plement a distributed communicating system e.g. in a M-
or E-Commerce scenario. When trying to verify such pro-
grams, thousands of Java classes with tens of thousands of
lines of code would have to be taken into consideration.
That is impossible. The paper introduces a technique that
dramatically reduces the amount of source code that must
be considered. Additionally, a suitable method for program-
ming security critical systems is introduced. The reduction
is achieved by extracting a verification kernel from the pro-
gram, which is sufficient for proving the correctness of the
relevant part. An algorithm for the automatic computation
of the verification kernel has been developed and is pre-
sented in the paper. The correctness of the verification ker-
nel approach is proved on the level of the Java language
semantics.

1. Introduction

Especially in E-Commerce, security of computer sys-
tems is one of the most important factors for the acceptance
and the success in a commercial scenario. Nearly every-
day new security holes are discovered and, even worse, ex-
ploited [2] [12]. The economical damage is immense. But
to ensure security of computer systems big efforts have to
be made. Unit testing, code coverage tests and all the other
kinds of tests are used to find the errors in the source code
that lead to security holes. To achieve highest assurance for-
mal methods are used to prove a system correct, including
source code analysis, model checking and interactive veri-
fication.

This paper introduces a method that extracts a kernel
(called verification kernel in the sequel) from an applica-
tion that encapsulates the security related parts of the pro-
gram. ‘security related’ is, for example, the implementa-

tion of a (cryptographic) communication protocol for an e-
commerce application. It is hard to get such a protocol se-
cure. Formal methods are often used to prove security of
such protocols, e.g. [13] [5]. The implementation of those
programs is also very error prone. Therefore it makes sense
to formally prove the functional correctness of this part of
the implementation. The GUI is maybe not considered as
security critical; hence no formal verification is planned.
The verification kernel approach presented in this work sup-
ports such a formal correctness proof. It is not aimed at
Trojan horses, viruses, or malicious users.

The method has been applied to a realistic case study,
an M-commerce application for buying electronic tickets.
The kernel approach reduces the amount of source codes
which has to be taken into consideration for security related
questions by 87 percent. The case study will be explained
in this paper.

We define an export and an import interface for the ker-
nel and compute the kernel automatically. The export in-
terface defines which operations can be called on the kernel
from the rest of the program. The import interface defines
the operations on which the kernel relies to fulfill its func-
tionality. This is possible because of the fact that only a
small part of the program is really important in typical e-
commerce applications. This means that assumptions have
to be made about the part of the program below the import
interface which was omitted. The operations for which we
make assumptions are defined in the import interface of the
kernel.

Certain assumptions have to be made in any case. For
example, it is not known how to prove that a cryptographic
implementation of anencryptoperation for AES or RSA re-
ally encrypts, meaning that no one can extract the plain text
without knowing the key, or that it is difficult to derive the
key. Similar assumptions have to be made about communi-
cation. The property of asend(data)operation in an imple-
mentation of a communication subsystem, which states that
the data really arrives at the communication partner, cannot
be verified, too. However, it is valid to make assumptions



about the correct behavior of those implementations.
A lot of work in the area of verification and testing of

kernelized systems has already been done. The idea of ker-
nelized systems, where all security related code is encapsu-
lated in some special program part is a common practice in
software engineering. Rushby’s work in this area is a good
example (see [15] and [14]). From our point of view, one of
the improvements of the approach in this paper is the pos-
sibility of computing the verification kernel automatically.
This is not given — as far as the authors know — for any of
the present kernel approaches.

Our approach maps the kernelized approach to the Java
programming language [10], which is a suitable, often used
and modern language for the implementation of distributed
and security relevant systems (see e.g. [9] [4] [1] for appli-
cations of formal methods to Java). We deal with full se-
quential Java. (Threads should not occur in the kernel.) The
algorithm has to deal with a lot of specialties related to the
programming language. Those will be described later on.
The extraction algorithm itself has been implemented and
integrated in the KIV system, an interactive theorem prover
[3]. A calculus for sequential Java is integrated in the KIV
system [16].

In section 2 we will introduce an example application,
which illustrates the approach later on. Section 3 explains
the kernel method in general and explains how Software En-
gineering techniques are used to get a well structured de-
sign for security related program parts including import and
export interface, which is afterwards also suitable for ex-
tracting a verification kernel by an algorithm. Section 4 de-
scribes the algorithm. The details which the algorithm has
to handle for Java are also explained in this section. Section
5 gives an overview over our efforts in proving the correct-
ness of the method on the level of the Java language seman-
tics.

2. Example application

To illustrate the method of this paper we will shortly de-
scribe an example application for the kind of E-Commerce
scenario we are interested in:

The EON (electronic onboard ticketing) application (see
Fig. 1) is a Java Application running on a PDA for the pur-
pose of buying train tickets directly in the train. There is the
possibility of ‘presenting’ the electronic tickets to a conduc-
tor. The conductor also has a PDA and is able to check the
validity of the tickets. Additionally, a server inside the train
is required. All communication in the scenario is done with
Bluetooth. For a detailed description of the application see
e.g. [8].

There are many security properties in this scenario that
are different for the different participants. Two obvious ex-
amples are:

Figure 1. The EON application
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Figure 2. Class diagram for the simplified
EON example

• Nobody should be able to fake tickets.

• No attacker should be able to ‘steal’ tickets from an-
other traveller.

The adherence to those security properties is achieved
by the communication protocol which uses lots of crypto-
graphic functions, such as digital signatures, symmetric and
asymmetric encryption, hash values and nonces. For the rest
of the paper, a simplified version of this application will be
used to illustrate the approach. A class diagram showing the
relevant part of the simplified application is shown in figure
2.

The purpose of this example application is to implement
the protocol for buying a train ticket. This means the PDA
has to communicate with the server and run a cryptographic
protocol. The implementation has a graphical user inter-
face and a subsystems for bluetooth communication and the
cryptographic primitives. For simplicity reasons, disk stor-



age functions are omitted in this example, as well as pay-
ment methods and every other functionality besides buying
tickets.

The main protocol functionality is implemented in the
classEONPDA. The methodhandleBuy handles the ex-
ecution of the relevant protocol steps for buying and uses
the classTicket for storing the bought ticket. As we see,
the kernel functionality is divided in two classesPDAand
EONPDA. The reason is to implement functionality needed
for general protocol handling (such as receive user inputs or
manage administrative tasks such as storing an identifica-
tion numberPDA_ID) in the superclass and to implement
real protocol handling (like (de-)compositions of messages
during the protocol runs) in the subclass.

The protocol related functionality is invoked by the
Graphical User Interface. For this we define aKer-
nelInterface , which later on will be our export in-
terface for the kernel. This interface contains the method
handleCommand , which has it’s origin in the Command-
Pattern [6]. To initiate the buy protocol, the GUI callshan-
dleCommand with a parameter of the typeBuyCommand.

The KernelInterface , the classesEONPDA, PDA,
Ticket and the Commands are declared in an extra pack-
age. Due to this, the GUI or any other class outside the
protocol related classes cannot call any other operations
thanaddSubscriber , handleCommand , the construc-
tors of EONPDAand the Commands. Since it is declared
protected the constructor ofPDAcannot be called from the
outside. They define the export interface for calling kernel
operations from the outside.

The functions in the import interface which the ker-
nel uses are those provided by the GUI, the cryptographic
subsystem implementing cryptographic primitives likeen-
crypt() , and the subsystem for communication.

We use the Publish-Subscribe Pattern for separation of
the GUI. We have the operationaddSubscriber to reg-
ister the GUI as an event listener at the kernel. When some
status changes (e.g. when the buy protocol is finished),
some kernel object will call the methodpublishEvent ,
which will then notify all subscribed listeners by calling
their methodhandleEvent . (For simplicity, the events
that are parameter for those operations are omitted in the
class diagram.)

To separate the cryptography implementation there ex-
ists theCryptoInterface . An object that is imple-
menting this interface must be passed to thePDA con-
structor as a parameter and is from there on accessible
through an instance fieldci . The communication subsys-
tem is accessible through the interfaceCommInterface
in a similar manner. Together, we have an import interface
for the kernel consisting of the methods in the Java inter-
facesEventListener , CryptoInterface andCom-
mInterface .

3. Kernels in Java

3.1. Purpose of a Verification Kernel

A Verification Kernel can be seen as a design technique
for building applications for scenarios like E-Commerce
that rely heavily on communication protocols. First, we
have to define what the function of a verification kernel is:

A Verification Kernel is responsible for the correct
implementation of the formally specified protocol.

When looking at the program from a design point-of-
view, one can identify more requirements:

First of all, the Verification Kernel should beseparable
from the rest of the program. Separability has to be achieved
on asemanticallevel (protocol implementation against rest
of program) and alsosyntactically(by using Java coding
techniques). No security relevant function should be depen-
dent on parts of the program that are not security related.
Finally, the kernel should becomplete, which means that all
security relevant functions should be encapsulated inside,
and it should becompact, which means that not more than
the security related functions are included.

3.2. Design Decisions and Separation of Program
Parts

This leads to the question how one can separate program
parts using the Java language.

A Java interface offers a lot of advantages when we want
to realize the separation of a program part. First of all, an
interface is suitable for defining the entry points to a class
implementation. If only the interface type is used in the rest
of the program, no other methods than the ones defined in
the interface can be called. Because interfaces are also easy
to use, they are in general a good practice for structuring the
code. Because their usage means no restriction for the pro-
grammer, they are the best candidates for the identification
of the system border.

Many of those arguments apply to abstract classes as
well. But with an abstract class, you still have the possibility
to implement methods inside the class that are not abstract.
If we would use abstract classes as a separation mechanism,
we would mix implementation and border of the kernel. In-
terfaces are a simpler and in our opinion cleaner mechanism
to encapsulate and hide implementations of certain func-
tions. Abstract classes can still be used inside the kernel,
but not to define its border

Interfaces are already used by a lot of design patterns
(see [6]) that are also suitable for semantic separation of
program parts. Examples are the two patternsCommand
andPublish-Subscribe, that were used in the example ap-
plications.



We use the command pattern for passing parameters to
the system. The usage of this pattern keeps the interface
for the system operations small, because only one method
is needed that handles all the system operations. The dis-
tinction which operation is to be performed is defined by
the type of the given command object.

As our goal is to achieve syntactical and semantical sep-
aration of a program part, we start with a simple program-
ming convention for the implementation.

Definition of the export interface
We use an Interface to declare the system operations

that will lead to the execution of source code that handles
the protocol functionality. In the EON application that is
only the operation that handles the user inputs (like select-
ing the desired station or payment method) and then runs
the buying protocol and communicates with the server.

Definition of the import interface
The protocol implementation will need classes from li-

braries that cannot be proven correct. From both the testing
point of view and the point of view of formal verification
it is usually not possible to verify that a library for crypto-
graphic functions issecure. As mentioned above, no one
can test or prove whether an encryption implementation for
AES or RSA really ensures that no one is able to decrypt
the result without the corresponding key. So here we come
to a point where we have to make assumptions about those
operations, even if we would not separate a kernel.

Because we make assumptions without a kernel ap-
proach, too, the implementation of those functions is not
part of the verification kernel. We hide their implementation
behind an interface and pass an object that is implementing
this interface as a parameter to a kernel class constructor.
We store the passed reference in a class field inside the ker-
nel with the type of the interface and use only this reference
for communication with the classes.

When this has been done we have a clear semantic and
syntactic border for the kernel implementation. The inter-
face defines the border from inside the kernel to outside op-
erations that are assumed to work or at least not to interfere
with kernel functionality.

The latter assumption is used for the graphical user inter-
face (GUI) of a security related program. We do not want
to deal with the GUI for ensuring that the communication
protocol is implemented correctly. As a solution, the above
mentioned publish-subscribe pattern is usable. This pattern
defines an interface (the ”Listener”), which is the border to
the GUI. Here, the same technique of passing a reference to
an object that implements the Listener-Interface to a kernel
class constructor is used. An assumption about this inter-
face must be that the call of a event handling function in
the GUI does not itself again call kernel functions. This is
needed because we want to know that the GUI implementa-

tion does not interfere with the kernel implementation. For
example, a GUI call is not allowed to change the value of
fields in the kernel or to send messages over the network.
This property of the GUI can be checked syntactically, at
least if the source code is available.

Another example is the communication subsystem. This
subsystem is ultimately implemented by native methods
that access the operating system and the communication de-
vices. Assumptions about those methods must be made,
even when their implementation (in C or another program-
ming language) is available.

From the point of view of formal verification, it is de-
sirable to have as few source code in the kernel as pos-
sible. In this respect the predefined Java API is a prob-
lem. The internal structure of the API (e.g. JDK 1.4) is
very complex, and an analysis shows that lots of classes
are needed for the execution of even simple API calls. An-
other problem is the fact that only half of the JDK 1.4
API (which involves nearly 10000 classes) is available as
source code. Therefore, if we have to use API functional-
ity, we try to encapsulate the functionality we really need
from API classes in additional classes that have an inter-
face defining their public available methods, too. Inside
the kernel, we use only those interfaces for accessing the
API functionality. For example, the class implementing the
CryptoInterfaceuses the Java Cryptography Architecture
and a concrete implementation of a provider. Of course,
the usage of interfaces to encapsulate API functionality is
not always possible, for example for methods defined in
java.lang.Object , java.lang.String or some
basic Exceptions. For those classes, one has to include the
API source code in the Verification Kernel.

Implementation of the protocol relevant functionality
First of all, we use a separate package for the kernel

classes and declare all methods for communication between
kernel objects as ”package protected” (we omit the method
modifier). We declare all methods that are only used within
a certain class as ”private”. We declare all fields ”private”,
too. This avoids undesired access to kernel methods not de-
fined in the kernel export interface All security related code
can only be executed after calling an operation defined in
the kernel interface. [11] gives good advice for program-
ming the security related code.

4. Verification Kernel Computation

As mentioned above, for verification purposes, one only
wants to look at the kernel classes to prove the system cor-
rect or test the security related functions. It is possible to
compute the verification kernel by an algorithm. The al-
gorithm must ensure that the execution of the statements
in the context of the verification kernel leads to exactly the



same result as in the original program. This is not trivial for
Java because in the kernel methods, classes, and fields are
omitted, and many Java statements depend on the class hi-
erarchy. To ensure this equivalence, efforts have been made
to prove that the Verification Kernel algorithm evaluates the
same semantics in both contexts. This will shortly be de-
scribed in section 5.

For practical use, security critical programs can be im-
plemented with respect to the design conventions men-
tioned above. When starting verification or testing, we use
the algorithm described below to compute the verification
kernel. The computation will show if the verification ker-
nel has some ”leaks” that will lead to the execution of code
that one does not want to verify (because correctness can
or must be assumed) or that simply has been forgotten to
outline. For that, a graphical representation of the structure
of connections between the kernel classes (for example by
method calls on references of another class type) has been
developed. For the EON application, a screenshot of this
structure is shown in figure 3 in section 4.7.

If the kernel structure is not as intended a refactoring of
the code is necessary (possibly iterated) until the computed
verification kernel fits to the idea of the security related part
of the program. The graphical representation gives a good
overview over the cause of the execution of unwanted code.
Experience shows that a programmer nearly always forgets
to clearly separate some of the cross references to security
unrelated code. The graphical representation of the kernel
offers a possibility to see the problems.

Now let us shortly look at the algorithm: Given the de-
scribed design technique, which mainly states that inter-
faces are the ”border” of the kernel implementation, it is
possible to do a reachability analysis on the Java code start-
ing at the system operations defined in the kernel interface.
Every piece of code that is possibly relevant for the exe-
cution of those system operations must be part of the ver-
ification kernel. Additionally, the analysis stops at the in-
terfaces that were defined as the kernel border by the de-
signer/programmer. Basically the general idea is to follow
the explicit and implicit call graph defined by the Java im-
plementation. Of course, lots of specialties related to the
Java programming language must be considered. We will
describe those later.

Now we can start to compute the verification kernel for
our example. The algorithm needs an input parameter that
specifies where to start the code analysis. This parameter is
our export interface. The passed parameterentrypoints
is a specification of the operations that are defined in the
kernel export interface. Those are the only operations that
can be called from outside the kernel.

The entry points for the analysis in our example are the
methodshandleCommand , addSubscriber and the
constructors that can be called from outside. Therefore, we

start with the classesPDAandEONPDA, and include only
the bodies of those methods. After that, we start to analyze
the bodies of those methods, looking at every single Java
statement.

The following pseudo code gives an overview over the
algorithm that follows the explicit and implicit call graph.
It is explained afterwards.

function vkern(param typedeclarations,
param entrypoints)

result := emptyset;
for each (entry in entrypoints) do

memberdecl := find memberdeclaration
for entry in
typedeclarations

typedecl := add memberdecl to empty
classdeclaration with
classname specified
by entry

result += typedecl;
end for

do
for each (new memberdeclaration

mem in result)
fun := take next method-/

constructorbody from mem
for each (statement/expression s

in body of fun) do
if (s is a constructorcall c.c(..))

result += (c + c.c(...)
+ fields(c)
+ initializers(c));

result += (superclasses(c)
+ superclass

contructors);
else if (s is a instance

methodcall e.m(...))
if(static type of e is a

import interface i)
decl = get declaration

i.m(...) for m(...);
result += decl;

else
find implementation body

c.m(...) for m(...)
result += c.m(...);

end if
else if (s is a static

methodcall c.m(...))
result += c.m(...)

+ statfields(c);
end if

end for



while (new code was added to result
in this iteration)

return result;
end function

Inside every member declaration of each class we decide,
depending on the particular statement, what has to be done
further. In the following, we will discuss the Java language
constructs and additional specialties that lead to the addition
of new code to the kernel.

The following code (which could appear in our simpli-
fied EON application) serves as an example:

class PDA {
static byte[] PDA_ID;
CryptoInterface ci;
CommInterface comm;

PDA(CryptoInterface ci,
CommInterface comm){

this.ci = ci; this.comm = co;
PDA_ID = new byte[]{1,2};}

static byte[] getPDA_ID(){
return PDA_ID;}}

class EONPDA extends PDA{
public EONPDA(CryptoInterface ci,

CommInterface co){
super(ci, co);}

public void handleCommand(Command c){
handleBuy((BuyCommand) c);}

private void handleBuy(){
byte[] ini = ci.encrypt(PDA.PDA_ID);
comm.sendByteArray(ini);
...
byte[] answer = comm.receive();
myTicket = new Ticket(answer);
publishEvent(

new Event("Ticket bought"));
....}}

4.1. Constructor Call

When a Constructor Call is reached it must be en-
sured that the corresponding body is added to the ker-
nel. For example, when analyzing the expressionnew
Ticket(answer) , we have to add the classTicket in-
cluding its constructor with the parameterbyte[] to the
kernel. But that is not enough. When creating an object of
a class type, the object will be added to memory including

all its instance fields and their field initializers will be ex-
ecuted. One could argue that only those fields of the class
Ticket are needed that are really set by the constructor.
But that would be incorrect, due to the fact that initializa-
tion of all fields is done when creating the object. If the
initialization of some of the other fields would lead to an
exception, the semantics of our kernel constructor would be
different, because it would not cause this exception, since
we have omitted the field. This means we have to add all
fields.

Additionally, the instance initialization of the class is
done. This means execution of the top-level initialization
blocks of the class. We have to add those initialization
block(s), too.

Another Java specialty that must not be forgotten is static
initialization. Static initialization adds all static fields of the
initialized class to memory and runs all static initializers
(initialization blocks on the top level of the class and the
initializations of the static fields). Static initialization of a
type T occurs for the first time, when (see [10] 12.4.1)

• T is a class and an instance of T is created

• T is a class and a static method declared by T is in-
voked

• A static field declared by T is assigned

• A static field declared by T is used and the reference to
the field is not a compile-time constant

Additionally, the super classes of T are initialized, if that
has not already happened. For our algorithm that means
we have to add all static fields of the class and the static
initialization block(s), too.

The Java compiler adds implicit super() constructor calls
to the beginning of every constructor when there is not al-
ready another constructor call (like thesuper(ci) call in
our example). Those implicit constructors have to be ana-
lyzed, too. So the described mechanism must be used for
every super class.

4.2. Static Field Access/Assignment

One could think that (because of the constructor mecha-
nism) all fields of a class are always part of the kernel when
a statement that accesses one of them is analyzed. But that
is not true. Due to the fact that no instance of a class has
to be created when accessing a static field of a class (like
PDA.PDA_ID in our example), we cannot be sure that the
accessed field of the class is already present. When the field
is assigned (or used and is not a constant) in the analyzed
statement, this could lead to static initialization of the class
(remember the section above), too. So we have to add all
static fields and the initialization blocks to the kernel when
accessing a static field.



4.3. Static Method Call

The same is true for the static method call; static initial-
ization could occur. Of course we have to search the corre-
sponding method body. Note that the method might not be
declared in the class that is used in the method invocation.
For example, the following code could occur:

byte[] id = EONPDA.getPDA_ID();
As we see, the methodgetPDA_ID() is not declared

in classEONPDA, but in its superclassPDA. Static initializa-
tion is only done for the super class, not forEONPDA. This
must be handled correctly by selecting the right method
body from the type declarations and adding it to the right
class including static initialization.

4.4. Instance Method Call

When a method call is executed in Java, finding the
right method body for the actual call is done by a dynamic
method lookup (also called late binding). The dynamic
method lookup is based on theruntime typeof the expres-
sion the method is called on (invoking expression). Since
it is undecidable to determine the runtime type of the in-
voking expression by only looking at the code (the type of
the expression could be dependent on any computation), the
separation algorithm has to decide which implementation
must be added by looking at thestatic typeof the invoking
expression.

Having that mechanism in mind, one sees that the al-
gorithm has to add the method declaration with the same
signature as the called method from

• the class declaration of the static type of the invoking
expression, if it exists, or

• the first (in terms of distance of the classes in the class
hierarchy) super class that contains the method decla-
ration.

But subclasses have to be taken in consideration, too.
The following code is an example:

PDA pda = new EONPDA(...);
pda.handleCommand(...);

The static type of the reference variablepda is PDA,
while its runtime type isEONPDA. So the call of the method
handleCommand leads to the execution of the method
body that is defined in theEONPDA-class, not the one de-
fined inPDA. Unfortunately,EONPDAis a subclass ofPDA
and so it was not included in the above strategy to search
the method body. Now, the first idea is to search the method
body in every subclass of the static type and add it to the
kernel if it exists there. That is correct, but could add way
too many classes. An example is the methodtoString()

defined in java.lang.Object . Many classes from
the Java API override this method, because the textual
representation of each class is different. When calling
toString() on an object of typejava.lang.Object
in our verification kernel, we do not want to add the
method body fromjava.lang.Thread to the kernel
in our example, because we know that this one cannot
be called. How do we know that? The answer is sim-
ple: In order to execute an instance method of the class
java.lang.Thread , an object of that type is needed
that was created by calling its constructor (or the construc-
tor of some subtype). If we did not do so, no method from
that class can be executed. Because of this, the solution is
to delay the addition of method bodies from subclasses to
the kernel. After separating the kernel without respect to
those method bodies, we do an additional run through all
extracted type declarations and add the overridden methods
to the corresponding bodies. Note that for simplicity rea-
sons, this additional run through the type declarations is not
mentioned in the pseudo code above. After this run the ker-
nel contains all relevant method bodies. Of course, that run
may add new code to the kernel, which in turn has to be
analyzed additionally, which leads to an iterative process.

When the static type of the invoking expression is an
interface type the kernel import interface is reached. We
do not want to look at the method body (we will as-
sume it works correctly); so just the interface declara-
tion and the corresponding method definition has to be
added. No further search for a method body is done. That
is for example the case in our code above when calling
ci.encrypt(PDA.PDA_ID) , because the static type of
ci is CryptoInterface . By this, we successfully omit-
ted the cryptography implementation. A formal verification
not based on the kernel approach also has to make assump-
tions about theencrypt method. This justifies omitting
the body. The same is true for the call ofpublishEvent ,
which separates the GUI.

4.5. Additional used types

When we have finished our kernel extraction to the point
described above, there still is the possibility that some types
are used inside the kernel that are not part of it. That is not
allowed, because the program would not execute correctly
(it would not even be accepted by a compiler). That can
happen if we just use the types of the classes and do not
create objects of them or call methods on them. For exam-
ple, we could have the following code:

try{...}
catch(FatalException e) {
System.out.println(”Error” + e);
System.exit(0);
}



The typeFatalException is just used to denote the
exception type to catch and not used any further. It is pos-
sible that this exception is a Runtime Exception, and was
thrown by one of the methods that are outside the kernel,
hidden behind an interface. If that is the case, no object
of type FatalException has been created in thetry -
block and the type would still be missing in the kernel.
Therefore, another additional run through the type decla-
rations is needed to find all those ignored types and add
just their type declarations with empty bodies, including
the declarations of all super classes of them. Those dec-
larations are needed to know the position of those types
in the type hierarchy. Otherwise some statements, like
casts,instanceof , or thecatch example above, would
not evaluate correctly because it is relevant for them to
know if a type is subtype of some other type. Acast
can only be done for subtypes of the class type,e in-
stanceof t is true if the type ofe is subtype oft and
finally catch(t){...} catches a thrown exception only
if its type is subtype oft .

4.6. Result for the example

Running the algorithm as described the kernel consists of
the classesPDA, EONPDA, Ticket and the Command
classesCommandandBuyCommand. Additionally, the in-
terfaces surrounding those classes are needed. The GUI im-
plementation, the cryptography classes (RSACrypto ) and
the Communication Implementation (BluetoothComm )
arenot part of the kernel. The kernel is illustrated in fig-
ure 2 by the dotted line. In this figure, the kernel seems to
be quite large in relation to the classes that are outside of it.
But of course the implementation of those functions outside
the kernel consists of many more classes in reality that are
not shown in this figure.

4.7. Using the technique in a realistic scenario

Now we take a short look at the real EON application
to show the reduction of the type declarations in a realis-
tic example: The code for the implementation of the PDA
program part in the EON application consists of 84 classes.
Additionally, a surprisingly large number of API classes is
needed. Those are mainly GUI classes, but also classes
like java.util.Vectorfor data management. After running
the algorithm, the verification kernel consists of 35 program
classes and includes 5 API classes. More than three quar-
ters of those 35 classes are exceptions and command ob-
jects with very small implementations (containing only a
constructor and some basic methods like get and set meth-
ods). The main code implementing the protocol logic is
encapsulated in only three of those classes. On the level
of source code lines, the algorithm separates 2000 out of

the initial 15000 lines of code. This means that the source
code reduction is around 40 percent of the classes, and a for-
mal verification must consider only 13 percent of the overall
lines of code. This is a big simplification.

As mentioned above, the kernel algorithm leads to a
graphical representation of the implicit and explicit call
graph of the application. That graph can be used to de-
tect problems with the separation on source code level. A
screenshot showing a small part of the call graph in the EON
kernel is presented below.

Figure 3. Graphical representation of the call
structure in the EON Kernel

5. Correctness of Verification Kernels

The computation of a verification kernel is correct if the
methods of the kernel have the same semantics as in the
complete program. This holds if the kernel fulfills some
properties. Finding all properties is not trivial, becauseof
Java’s complexity. The adequacy of these properties has
been proved formally with KIV based on a formal Java se-
mantics. We will now have a short and abstracted look at
the theorem, for a detailed description of the proof see [7].

Let sem(st,α,tds,st1) be the semantics relation that
states that the semantics of programα is defined as a re-
lation between statest and statest1 in the context of the
type declarationstds. Let akern(tds, eps) be the function
that computes the verification kernel fromtds using the en-
try pointseps. Then the theorem is

properties(akern)
∧ eqSemImport(eps, tds, akern)
∧ α ∈ akern(tds, eps)
∧ sem(st, α, akern(tds, eps), st1)
→ sem(st, α, tds, st1)



If the semantics of a programα (that is contained inside
any of the kernel classes) leads to statest1 in the verifica-
tion kernel, the same statest1 will be reached in the full
program. This justifies the consideration of the verification
kernel in order to prove the correctness of the full program,
since programs in both contexts have the same semantics.

The separation of implementation parts hidden behind
interfaces is handled by adding a precondition to the theo-
rem that states that the semantics of all method calls, whose
static invoking type is an interface, are the same as in the
context of the original type declarations. This is represented
by the preconditioneqSemImport(tds, akern). That precon-
dition reflects the assumptions that one has to make about
the classes that implement those interfaces, namely that they
work correctly.

The algorithm for extracting the verification kernel is
large and complex due to many optimizations and the com-
plexity of the Java programming language itself. Because
of this, we use a program checking technique for the kernel
algorithm. We define an algebraic functionakernand give
propertiesproperties(akern)that are sufficient to verify the
theorem above. Instead of verifying thatproperties(vkern)
holds for the algorithmvkern from section 4 we check for
every run ofvkernthat the result satisfies these properties.

The preconditionproperties(akern)mainly states some-
thing about the type hierarchy and the existence of classes
after extracting the verification kernel. For example, the
proof confirms that the algorithm is not allowed to omit
classes that are needed as a type in some statement inside
the kernel. Additionally, the dynamic method lookup must
lead to the same method body as in the original program.
Constructor bodies and bodies of called static methods must
be the same. The fact described above that all fields of
used classes must be the same, was needed as a property by
the proof. Another very important property is the preserva-
tion of the class hierarchy for all used classes as described
above. Because the properties are very closely related to
the complex Java semantics and their formalization is some-
what lengthy, we do not give a full formal description of the
properties here. Please refer to [7] for a more detailed de-
scription. One example of such a property is given by the
following informal description:

When a constructor is called in the full type
declarations inside a possibly used kernel state-
ment, the corresponding class declaration must
be present in the verification kernel and its in-
stance and static fields must be the same.

This property, as well as the other preconditions, can
be checked on the source code level by iterating through
all statements and expressions of the kernel classes and do
checks as the one mentioned above. For example, when

getting to a constructor call for a certain class it is checked
syntactically if the fields are equal.

Finally, an interesting point is the fact that the checking
of the preconditions of the theorem on the kernel showed an
error in the first implementation:

If we pass object parameters to the verification kernel,
the static types of the corresponding constructor or method
parameters are interface types. Due to this, the first idea was
— as described — not to include the implementing classes
in the kernel, because those are just the classes, which we do
not want to treat in the verification. But that is only true for
the methods and fields declared inside those classes. Those
class types themselves can be freely used in the verification
kernel inside any statement, also including statements (as
described above) which need to know the position of the
used types in the type hierarchy. When we completely omit
those class declarations implementing some interfaces used
for separation, every information about the runtime type of
those objects is gone. Anyhow, we need this information.
So the solution is to add the sub- and corresponding super-
classes of the interface types used as a kernel entry point
parameter to the verification kernel,but only with empty
class bodies. That provides enough information to know the
place in the type hierarchy and does not increase the source
code amount of the kernel. The same is true for return val-
ues with a class or interface type given in some method in
a kernel border interface. New objects (with previously un-
known type) can come into the kernel and be evaluated by
statements inside. For those types, the type hierarchy must
be preserved by adding empty sub- and super-classes, too.

6. Conclusion

The paper describes a possibility to reduce the source
code complexity of a realistic program for a formal verifi-
cation. The method is based on the fact that only a small
part of the program has to be taken in consideration when
protocol correctness has to be verified. Of course, assump-
tions have to be made about the rest of the program. But
the technique remains suitable, because the greatest efforts
(which means formal verification at this point) should be
done for the most critical parts. The correctness of the as-
sumptions themselves can be checked using less expensive
techniques such as model checking or conventional testing.

The method of extracting the verification kernel together
with those assumptions has no influence on the semantics
of the program and is therefore suitable for proving the
correctness of the protocol implementation for the full pro-
gram. The correctness of the algorithm was ensured using
program checking and formal verification.

The verification kernel algorithm is integrated into the
KIV system and we have used the method in realistic
scenarios. The results show that the formal treatment of



those programs is possible. Even with verification kernels,
the verification itself is still complex and difficult, but the
method is a step towards the verification of bigger programs
in real applications.

In the future we are planning to add further opportuni-
ties for defining the import interface. Currently, every Java
interface that is used inside the kernel serves as a kernel
border. This can be extended by defining the import inter-
face explicitly. Then it is possible to use Java interfaces also
inside the kernel. Another possible extension is the use of
abstract classes or also normal method calls on class types
as a kernel import interface. Furthermore, we will apply this
method together with the proof support for Java programs in
KIV to other case studies and will further improve the fea-
sibility of handling real Java programs with an interactive
theorem prover.
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